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Preface

Fundamentals of Geophysical Data Processing was �rst published in 1976 by McGraw

Hill and later republished by Blackwell in 1985. I was disappointed that it went out

of print again so I am now making it available free on the WWW. This electronic

reincarnation lacks the �nal two chapters of the original book which I dropped because

they are mostly better covered in my later books. A few errors are corrected in the

electronic version, but I fear new errors were introduced in the retyping so if you have

a copy of the original paper book, keep it!

This book contains basic and interesting material which because it does not play

a big role in industrial practice was neglected in my later books. I enjoy teaching

these basics from time to time and I use especially chapters 3,4,7,8,9. This is classic

material about Toeplitz matrices and layered media. Material from chapters 1,2,5,6

was improved and included in my third book, Earth Soundings Analysis, Processing

vrs. Inversion, now in print with Blackwells. This is material about Z-transforms and

least squares �tting.

Many people have told me that this book, which was my �rst book, is the most

creative of all my books. I agree. In defense of my more recent books, I would add

that they bene�tted greatly from the developement of word processors and from my

teaching experience. So here you have it. I hope you enjoy it, and I hope you are

getting it free.

v



vi CONTENTS



Chapter 1

Transforms

The �rst step in data analysis is to learn how to represent and manipulate waveforms

in a digital computer. Time and space are ordinarily regarded as continuous, but for

purposes of computer analysis we must discretize them. This discretizing is also called

digitizing or sampling. Discretizing continuous functions may at �rst be regarded as

an evil that is necessary only because our data are not always known analytic func-

tions. However, after gaining some experience with sampled functions, one realizes

that many mathematical concepts are easier with sampled time than with continuous

time. For example, in this chapter, the concept of the Z transform is introduced

and is shown to be equivalent to the Fourier transform. The Z transform is readily

understood on a basis of elementary algebra, whereas the Fourier transform requires

substantial experience in calculus.

1.1 SAMPLED DATA AND Z TRANSFORMS

Figure 1.1: A continuous time

function sampled at uniform time

intervals. c1-1-1 [NR]

Consider the time function in Figure 1.1. To analyze such an observed time function

in a computer it is necessary to approximate it in some way by a list of numbers.

The usual way to do this is to evaluate or observe b(t) at a uniform spacing of points

in time. For this example, such a digital approximation to the continuous function

1



2 CHAPTER 1. TRANSFORMS

could be denoted by the vector

b

t

= (: : : 0; 0; 1; 2; 0; �1; �1; 0; 0; : : :) (1:1)

Of course if time points were taken more closely together we would have a more accu-

rate approximation. Besides a vector, a function can be represented as a polynomial

where the coe�cients of the polynomial represent the values of b(t) at successive time

points. In this example, we have

B(Z) = 1 + 2Z + 0Z

2

� Z

3

� Z

4

(1:2)

This polynomial is called a Z transform. What is the meaning of Z in this polynomial?

The meaning is not that Z should take on some numerical value; the meaning of

Z is that it is the unit delay operator. For example the coe�cients of ZB(Z) =

Z+2Z

2

�Z

4

�Z

5

are plotted in Figure 1.2. It is the same waveform as in Figure 1.1,

but it has been delayed.

Figure 1.2: Coe�cients of ZB(Z)

are shifted version of the coe�-

cients of B(Z) c1-1-2 [NR]

We see that the time function b

t

is delayed n time units when B(Z) is multiplied

by Z

n

. The delay operator Z is very important in analyzing waves simply because

waves take a certain amount of time to get from place to place.

Another value of the delay operator is that it may be used to build up more

complicated time functions from simpler ones. Suppose b(t) represents the acoustic

pressure function or the seismogram observed after a distant explosion. Then b(t) is

called the impulse response. If another explosion occurs at t = 10 time units after

the �rst, we expect the pressure function y(t) depicted in Figure 1.3.

Figure 1.3: Response to two ex-

plosions. c1-1-3 [NR]

In terms of Z transforms this would be expressed as Y (Z) = B(Z) + Z

10

B(Z).

If the �rst explosion were followed by an implosion of half strength, we would have
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B(Z)�

1

2

Z

10

B(Z). If pulses overlap one another in time [as would be the case if B(Z)

was of degree greater than 10], the waveforms would just add together in the region

of overlap. The supposition that they just add together without any interaction is

called the linearity assumption. This linearity assumption is very often true in prac-

tical cases. In seismology we �nd that|although the earth is a very heterogeneous

conglomerations of rocks of di�erent shapes and types|when seismic waves (of usual

amplitude) travel through the earth, they do not interfere with one another. They

satisfy linear superposition. The plague of nonlinearity arises from large amplitude

disturbances. Nonlinearity does not arise from geometrical complications.

Now suppose there was an explosion at t = 0, a half-strength implosion at t = 1,

and another, quarter-strength explosion at t = 3. This sequence of events determines

a \source" time series, x

t

= (1;�

1

2

; 0;

1

4

). The Z transform of the source is X(Z) =

1�

1

2

Z+

1

4

Z

3

. The observed y

t

for this sequence of explosions and implosions through

the seismometer has a Z transform Y (Z) given by

Y (Z) = B(Z) �

Z

2

B(Z) +

Z

3

4

B(Z)

=

 

1�

Z

2

+

Z

3

4

!

B(Z)

= X(Z)B(Z) (1.3)

The last equation illustrates the underlying basis of linear-system theory that the

output Y (Z) can be expressed as the input X(Z) times the impulse response B(Z).

There are many examples of linear systems. A wide class of electronic circuits is

comprised of linear systems. Complicated linear systems are formed by taking the

output of one system and plugging it into the input of another. Suppose we have

two linear systems characterized by B(Z) and C(Z), respectively. Then the question

arises whether the two combined systems of Figure 1.4 are equivalent. The use of Z

transforms makes it obvious that these two systems are equivalent since products of

polynomials commute, i.e.,

Y

1

(Z) = [X(Z)B(Z)]C(Z) = XBC

Y

2

(Z) = [X(Z)C(Z)]B(Z) = XCB = XBC (1.4)

Consider a system with an impulse response B(Z) = 2�Z�Z

2

. This polynomial

can be factored into 2�Z�Z

2

= (2+Z) (1�Z), and so we have the three equivalent

systems in Figure 1.5. Since any polynomial can be factored, any impulse response can

be simulated by a cascade of two-term �lters (impulse responses whose Z transforms

are linear in Z).

What do we actually do in a computer when we multiply two Z transforms to-

gether? The �lter 2 + Z would be represented in a computer by the storage in

memory of the coe�cients (2; 1). Likewise, for 1�Z the numbers (1;�1) are stored.
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Figure 1.4: Two equivalent �ltering systems. c1-1-4 [NR]

Figure 1.5: Three equivalent �ltering systems. c1-1-5 [NR]
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The polynomial multiplication program should take these inputs and produce the

sequence (2;�1;�1). Let us see how the computation proceeds in a general case, say

X(Z)B(Z) = Y (Z) (1.5)

(x

0

+ x

1

Z + x

2

Z + � � �) (b

0

+ b

1

Z + b

2

Z) = (y

0

+ y

1

Z + y

2

Z

2

+ � � �) (1.6)

Identifying coe�cients of successive powers of Z, we get

y

0

= x

0

b

0

y

1

= x

1

b

0

+ x

0

b

1

y

2

= x

2

b

0

+ x

1

b

1

+ x

0

b

2

(1.7)

y

3

= x

3

b

0

+ x

2

b

1

+ x

1

b

2

y

4

= x

4

b

0

+ x

3

b

1

+ x

2

b

2

y

k

=

2

X

i=0

x

k�i

b

i

(1.8)

Equation (1.8) is called a convolution equation. Thus, we may say that the product of

two polynomials is another polynomial whose coe�cients are found by convolution.

A simple Fortran computer program which does convolution, including end e�ects on

both ends, is this:

DIMENSION X(LX), B(LB), Y(LY)

DO 10 IY=1,LY

10 Y(IY) = 0.

DO 20 IX=1,NX

DO 20 IB=1,NB

IY = IX+IB-1

20 Y(IY) = Y(IY) + X(IX)*B(IB)

The reader should notice that X(Z) and Y (Z) need not strictly be polynomials;

they may contain both positive and negative powers of Z; that is

X(Z) = � � �

x

�2

Z

2

+

x

�1

Z

+ x

0

+ x

1

Z + � � � (1.9)

Y (Z) = � � �

y

�2

Z

2

+

y

�1

Z

+ y

0

+ y

1

Z + � � � (1.10)

The e�ect of using negative powers of Z in X(Z) and Y (Z) is merely to indicate that

data are de�ned before t = 0. The e�ect of using negative powers of Z in the �lter is

quite di�erent. Inspection of (1.8) shows that the output y

k

which occurs at time k is

a linear combination of current and previous inputs; that is, (x

i

; i � k). If the �lter

B(Z) had included a term like b

�1

=Z, then the output y

k

at time k would be a linear

combination of current and previous inputs and x

k+1

, an input which really has not
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arrived at time k. Such a �lter is called a nonrealizable �lter because it could not

operate in the real world where nothing can respond now to an excitation which has

not yet occurred. However, nonrealizable �lters are occasionally useful in computer

simulations where all of the data are prerecorded.

EXERCISES:

1 Let B(Z) = 1 + Z + Z

2

+ Z

3

+ Z

4

. Graph the coe�cients of B(Z) as a function

of the powers of Z. Graph the coe�cients of [B(Z)]

2

.

2 If x

t

= cos!

0

t, where t takes on integral values, b

t

= (b

0

; b

1

), and Y (Z) =

X(Z)B(Z), what are A and B in y

t

= A cos!

0

t+ B sin!

0

t ?

3 Deduce that, if x

t

= cos!

0

t and b

t

= (b

0

; b

1

; : : : ; b

n

), then y

t

always takes the

form A cos!

0

t+ B sin!

0

t.

1.2 Z-TRANSFORM TO FOURIER TRANSFORM

We have de�ned the Z transform as

B(Z) =

X

t

b

t

Z

t

(1:11)

If we make the substitution Z = e

i!

we have a \Fourier sum"

B(Z) = B(e

i!

) =

X

t

b

t

e

i!t

(1:12)

This is like a Fourier integral, and we could do a limiting operation to make it into

an integral. Another point of view is that the Fourier integral

B(!) =

Z

+1

�1

b(t) e

i!t

dt (1:13)

reduces to the sum (1.12) when b(t) is not a continuous function of time but is de�ned

as

b(t) =

X

k

b

k

�(t � k) (1:14)

where � is an impulse function.

In the last section we saw that to multiply two polynomials the coe�cients must

be convolved. The same process in Fourier transform language is that a product in

the frequency domain corresponds to a convolution in the time domain.

Although one thinks of a Fourier transform as an integral which may be di�cult or

impossible to do, the Z transform is always easy, in fact trivial. To do a Z transform

one merely attaches powers of Z to successive data points. When one has B(Z) one

can refer to it either as a time function or a frequency function, depending on whether
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one graphs the polynomial coe�cients or if one evaluates and graphs B(Z = e

i!

) for

various frequencies !. Notice that as ! goes from zero to 2�, Z = e

i!

= cos!+ i sin!

migrates once around the unit circle in the counterclockwise direction.

If taking a Z transform amounts to attaching powers of Z to successive points of a

time function, then the inverse Z transform must be merely identifying coe�cients of

various powers of Z with di�erent points in time. How can this simple \identi�cation

of coe�cients" be the same as the apparently more complicated operation of inverse

Fourier integrals? The inverse Fourier integral is

b(t) =

1

2�

Z

+1

�1

B(!) e

�i!t

d! (1:15)

First notice that the integration of Z

n

about the unit circle or e

in!

over �� �

! < +� gives zero unless n = 0 because cosine and sine are oscillatory; that is,

1

2�

Z

�

��

e

in!

d! =

1

2�

Z

�

��

(cosn! + i sinn!) d!

=

(

1 if n = 0

0 if n = non-zero integer

(1.16)

In terms of our discretized time functions, the inverse Fourier integral (1.15) is

b

t

=

1

2�

Z

�

��

(� � � + b

�1

e

�i!

+ b

0

+ b

1

e

+i!

+ � � �) e

�i!t

d! (1:17)

Of all the terms in the integrand (1.17) we see by (1.16) that only the term with

b

t

will contribute to the integral; all the rest oscillate and cancel. In other words,

it is only the coe�cient of Z to the zero power which contributes to the integral,

reducing (1.17) to

b

t

=

1

2�

b

t

Z

+�

��

d! = b

t

(1:18)

This shows how inverse Fourier transformation is just like identifying coe�cients of

powers of Z.

In this book and many others, it is common to assume that the time span between

data samples �t = 1 is unity. To adapt given equations to other values of �t, one

only need replace ! by !�t; that is,

!

book

= !

book

�t

book

= !

true

�t

true

(1:19)

With Z transforms we have the spectrum given on a range of 2� for !

book

. In the

limit �t

true

goes to zero, !

true

has the same in�nite limits as the Fourier integral.

When a continuous function is approximated by a sampled function, it is necessary

to take the sample spacing �t

true

small enough. The basic result of elementary

texts is that, if there is no appreciable energy in a Fourier transform for frequencies

higher than some frequency !

max

, then there is no appreciable loss of information if
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Figure 1.6: Subsampled sinusoid.

c1-1-7a [NR]

the sampled at least two points per wavelength. Figure 1.6 shows how insu�cient

sampling of a sine wave often causes it to appear as a sine wave of lower frequency.

If a high-frequency sinusoid is sampled insu�ciently often, it becomes indistin-

guishable from a lower-frequency sinusoid. For this reason !

max

= �=�t is said to

be the folding frequency, as higher frequencies are folded down to look like lower

frequencies.

In practice, quasi-sinusoidal waves are always sampled more frequently than twice

per wavelength.

Next we wish to examine odd/even symmetries to see how they are a�ected in

Fourier transformation. The even part e

t

of a time function b

t

is de�ned as

e

t

=

b

t

� b

�t

2

(1:20)

The odd part is

o

t

=

b

t

� b

�t

2

(1:21)

A function is the sum of its even and odd parts. By adding (1-2-10) and (1-2-11), we

get

b

t

= e

t

+ o

t

(1:22)

Consider a simple, real, even time function such as (b

�1

; b

0

; b

1

) = (1; 0; 1). Its

transform Z + 1=Z = 2 cos! is an even function of ! since cos! = cos(�!). Con-

sider the real, odd time function (b

�1

; b

0

; b

1

) = (�1; 0; 1). Its transform Z � 1=Z =

2(sin!)=i is imaginary and odd, since sin! = � sin(�!). Likewise, the transform

of the imaginary even function (i; 0; i) is the imaginary even function i cos! and the

transform of the imaginary odd function (�i; 0; i) is real and odd. Let r and i refer

to real and imaginary, e and o refer to even and odd, and lower-case and upper-

case refer to time and frequency functions. A summary of the symmetries of Fourier

transformation is shown in Figure 1.7.

More elaborate time functions can be made up by adding together the two point

functions we have considered. Since sums of even functions are even, and so on, the

table of Figure 1.7 applies to all time functions. Note that an arbitrary time function

takes the form b

t

= (re + ro)

t

+ i(ie + io)

t

. On transformation of b

t

, each of the four

individual parts transforms according to the table
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Figure 1.7: Mnemonic table

illustrating how even/odd and

real/imaginary properties are af-

fected by Fourier transformation.

c1-1-7b [NR]

EXERCISES:

1 Normally a function is speci�ed entirely in the time domain or entirely in the fre-

quency domain. When one is known, the other is determined by transformation.

Now let us give half the information in the time domain by specifying that b

t

= 0

for t < 0, and half in the frequency domain by giving the real part RE + RO in

the frequency domain. How can you determine the rest of the function?

1.3 THE FAST FOURIER TRANSFORM

When we write the expression

B(Z) = b

0

+ b

1

Z + b

2

Z

2

+ � � � (1:23)

we have both a time function and its Fourier transform. If we plot the coe�cients

(b

0

; b

1

; : : :), we plot the time function. If we evaluate and plot (1.23) at numerous real

!, then we have plotted the transform. (Note that for real !, Z is of unit magnitude;

i.e., on the unit circle.) Since ! is a continuous variable and everything in a computer

is �nite, how do we select a �nite number of values !

k

for plotting? The usual

choice is to take evenly spaced frequencies. The lowest frequency can be zero. [Note

Z(! = 0) = e

io

= 1.] A frequency as high as ! = 2� [Note Z(! = 2�) = e

i2�

= 1 also]

need not be considered, since (1.23) gives the same value for it as for zero frequency.

Choosing uniformly spaced frequencies between these limits we have

!

k

=

(0; 1; 2; : : : ;M � 1) 2�

M

(1:24)

where M is some integer. Now let us abbreviate B(Z(!

k

)) as B

k

.

For the special case of an N -point time function where N = 4, (1.23) may be

expressed by the matrix multiplication

2

6

6

6

4

B

0

B

1

B

2

B

3

3

7

7

7

5

=

2

6

6

6

4

1 1 1 1

1 W W

2

W

3

1 W

2

W

4

W

6

1 W

3

W

6

W

9

3

7

7

7

5

2

6

6

6

4

b

0

b

1

b

2

b

3

3

7

7

7

5

(1:25)
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where

W = e

2�i=N

(1:26)

It is not essential to choose N =M as we have done in (1.25), but it is a convenience.

There is no loss of generality because one may always append zeros to a time function

before inserting it into (1.25). A convenience of the choice N =M is that the matrix

in (1.25) will then be square and there will be an exact inverse. In fact, the inverse

to (1.25) may be easily shown to be

2

6

6

6

4

b

0

b

1

b

2

b

3

3

7

7

7

5

= 1=N

2

6

6

6

4

1 1 1 1

1 1=W 1=W

2

1=W

3

1 1=W

2

1=W

4

1=W

6

1 1=W

3

1=W

6

1=W

9

3

7

7

7

5

2

6

6

6

4

B

0

B

1

B

2

B

3

3

7

7

7

5

(1:27)

Since 1=W is the complex conjugate of W , the matrices of (1.25) and (1.27) are

just complex conjugates of one another. In fact, one observes no fundamental math-

ematical di�erence between time functions and frequency functions. This \duality"

would be even more complete if we had used a scale factor of N

�1=2

in each of (1.25)

and (1.27) rather than 1 in (1.25) and N

�1

in (1.27). Note also that time functions

and frequency functions could be interchanged in the mnemonic table describing sym-

metries. In fact, our earlier observation that the product of two frequency functions

amounts to a convolution of two time functions corresponds to the convolution of the

corresponding two frequency functions. We will not \provide" this duality as it is

standard fare in both mathematics and systems theory books. However we will occa-

sionally call upon the reader to realize that in any theorem the meanings of \time"

and \frequency" may be interchanged.

In making a plot of the transform B

k

for (k = 0; 1; : : : ;M � 1), the frequency axis

ranges as 0 � !

k

< 2�. It is often more natural to display the interval �� � ! < �.

Since the transform is periodic with period 2�, values of B

k

on the interval � � ! < 2�

may simply be moved to the interval �� � ! < 0 for display.

Thus, for N = 8 one might plot successively

B

4

B

5

B

6

B

7

B

0

B

1

B

2

B

3

(1:28)

corresponding to values of ! equal to

� �;�

3�

4

;�

�

2

;�

�

4

; 0;

�

4

;

�

2

;

3�

4

(1:29)

One advantage of this display interval is that for continuous time series which are

sampled su�ciently densely in time the transform values B

k

get small on both ends.

If the time series is real, the real part of B

k

has even symmetry about B

0

; the

imaginary part has odd symmetry about B

0

. Then, one need not bother to display

half the values. Choice of an odd value of N would enable us to put ! = 0 exactly

in the middle of the interval, but the reader will soon see why we stick to an even

number of data points.
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The matrix times vector operation in (1.25) requires N

2

multiplications and ad-

ditions. The rest of this section describes a trick method, called the fast Fourier

transform, of accomplishing the matrix multiplication in N log

2

N multiplications

and additions. Since, for example, log

2

1024 is 10, this is a tremendous saving in

e�ort.

A basic building block in the fast Fourier transform is called doubling. Given a

series (x

0

; x

1

; : : : ; x

N�1

) and its sampled Fourier transform (X

0

; X

1

; : : : ; X

N�1

) and

another series (y

0

; y

1

; : : : ; y

N�1

), one �nds the transform of the interlaced double-

length series

z

t

= (x

0

; y

0

; x

1

; y

1

; : : : ; x

N�1

; y

N�1

) (1:30)

The process of doubling is used many times during the process of computing a fast

Fourier transform. As the word doubling might suggest, it will be convenient to

suppose that N is an integer formed by raising 2 to some integer power. Suppose N =

8 = 2

3

. We begin by dividing our eight-point series of one point each. The Fourier

transform of each of the one-point series is just the point. Next, we use doubling four

times to get the transforms of the four di�erent two point series (x

0

; x

4

), (x

1

; x

5

),

(x

2

; x

6

), and (x

3

; x

7

). We use doubling twice more to get the transforms of the two

di�erent four point series (x

0

; x

2

; x

4

; x

6

) and (x

1

; x

3

; x

5

; x

7

). Finally, we use doubling

once more to get the transform of the original eight-point series (x

0

; x

1

; x

2

; : : : ; x

7

).

It remains to look into the details of the doubling process.

Let

V = e

i2�=2N

=W

1=2

(1.31)

V

N

= e

i�

= �1 (1.32)

The transforms of two N -point series are by de�nition

X

k

=

N�1

X

j=0

x

j

V

2jk

(k = 0; 1; : : : ; N � 1) (1.33)

Y

k

=

N�1

X

j=0

y

j

V

2jk

(k = 0; 1; : : : ; N � 1) (1.34)

The transform of the interlaced series z

j

= (x

0

; y

0

; x

1

; y

1

; : : : ; x

N�1

; y

N�1

) is by de�-

nition

Z

k

=

2N�1

X

l=0

z

l

V

lk

(k = 0; 1; : : : ; 2N � 1) (1:35)

To make Z

k

from X

k

and Y

k

we require two separate formulas: one for k = 0,

1, : : :, N � 1, and the other for k = N , N + 1, : : :, 2N � 1.

First

Z

k

=

2N�1

X

l=0

z

l

V

lk

(k = 0; 1; : : : ; N � 1)



12 CHAPTER 1. TRANSFORMS

We split the sum into two parts, noting that x

j

multiplies even powers of V and y

j

multiplies odd powers.

Z

k

=

N�1

X

j=0

x

j

V

2jk

+ V

k

N=1

X

j=0

y

j

V

2jk

(1.36)

= X

k

+ V

k

Y

k

(1.37)

We obtain the last half of the Z

k

by

Z

k

=

2N�1

X

l=0

z

l

V

lk

(k = N;N + 1; : : : ; 2N � 1) (1.38)

=

2N�1

X

l=0

z

l

V

l(m+N)

(k �N = m = 0; 1; : : : ; N � 1) (1.39)

=

2N�1

X

l=0

z

l

V

lm

(V

N

)

l

(1.40)

=

2N�1

X

l=0

z

l

V

lm

(�1)

l

1.4 Phase delay and group delay

This material was revised and included in my third book, ESA:PVI.

1.5 Correlation and spectra

This material was revised and included in my third book, ESA:PVI.

1.6 Hilbert transform

This material was revised and included in my third book, ESA:PVI.
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Figure 1.8: A program to do fast Fourier transform. Modi�ed from Brenner. Calling

this program twice returns the original data. SIGNI should be +1. on one call and

�1. on the other. LX must be a power of 2. c1-1-8 [NR]
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Chapter 2

One-sided functions

All physical systems share the property that they do not respond before they are

excited. Thus the impulse response of any physical system is a one-sided time function

(it vanishes before t = 0). In system theory such a �lter function is called realizable.

In wave propagation this property is associated with causality in that no wave may

begin to arrive before it is transmitted. The lag-time point t = 0 plays a peculiar and

an important role. For this reason, many subtle matters will be much more clearly

understood with sampled time than with continuous time. When a �lter responds at

and after lag time t = 0, we will say the �lter is realizable or causal. The word causal

is appropriate in physics where stress may cause (practically) instantaneous strain

and vise versa, but one should revert to the more precise words realizable or one-sided

when using �lter theory to describe economic or social systems where simultaneity is

quite di�erent from cause and e�ect.

2.1 INVERSE FILTERS

To understand causal �lters better, we now take up the task of undoing what a

causal �lter has done. Consider the output y

t

of a �lter b

t

is known but the input x

t

is unknown. See Figure 2.1.

Figure 2.1: Sometimes the input

to a �lter is unknown. c2-2-1

[NR]

This is the problem that one always has with a transducer/recorder system. For

example, the output of a seismometer is a wiggly line on a piece of paper from which

the seismologist may wish to determine the displacement, velocity, or acceleration of

the ground. To undo the �ltering operation of the �lter B(Z), we will try to �nd

another �lter A(Z) as indicated in Figure 2.2.

15
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Figure 2.2: The �lter A(Z) is in-

verse to the �lter B(Z). c2-2-2

[NR]

To solve for the coe�cients of the �lter A(Z), we merely identify coe�cients of

powers of Z in B(Z)A(Z) = 1. For B(Z), a three-term �lter, this is

(a

0

+ a

1

Z + a

2

Z

2

+ a

3

Z

3

+ � � �) (b

0

+ b

1

Z + b

2

Z

2

) = 1 (2:1)

The coe�cients of Z

0

; Z

1

; Z

2

; � � � in (2.1) are

a

0

b

0

= 1 (2.2)

a

1

b

0

+ a

0

b

1

= 0 (2.3)

a

2

b

0

+ a

1

b

1

+ a

0

b

2

= 0 (2.4)

a

3

b

0

+ a

2

b

1

+ a

1

b

2

= 0 (2.5)

a

4

b

0

+ a

3

b

1

+ a

2

b

2

= 0 (2.6)

� � � � � � � � � � � � � � � � � �

a

k

b

0

+ a

k�1

b

1

+ a

k�2

b

2

= 0 (2.7)

From (2.2) one may get a

0

from b

0

. From (2.3) one may get a

1

from a

0

and the b

k

.

From (2.4) one may get a

2

from a

1

; a

0

; and the b

k

. Likewise, in the general case a

k

may be found from a

k�1

; a

k�2

, and the b

k

. Speci�cally, from (2.7) the a

k

may be

determined recursively by

a

k

=

�

2

P

i=1

a

k�i

b

i

b

0

(2:8)

Consider the example where B(Z) = 1 � Z=2; then, by equations like (2.2) to

(2.7), by the binomial theorem, by polynomial division, or by Taylor's power series

formula we obtain

A(Z) =

1

1� Z=2

= 1 +

Z

2

+

Z

2

4

+

Z

3

8

+ � � � (2:9)

We see that there are an in�nite number of �lter coe�cients but that they drop

o� rapidly in size so that approximation in a computer presents no problem. The

situation is not so rosy with the �lter B(Z) = 1� 2Z. Here we obtain

A(Z) =

1

1� 2Z

= 1 + 2Z + 4Z

2

+ 8Z

3

+ 16Z

4

+ 32Z

5

+ � � � (2:10)

The coe�cients of the series increase without bound. The outputs of the �lter A(Z)

depend in�nitely strongly on inputs of the in�nitely distant past. [Recall that the
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present output of A(Z) is a

0

times the present input x

1

plus a

1

times the previous

input x

t�1

, etc., so a

n

represents memory on n time units earlier.] The implication of

this is that some �lters B(Z) will not have useful �nite approximate inverses A(Z)

determined from (2.2) to (2.8). We now seek ways to identify the good �lters from

the bad ones. With a two-pulse �lter, the criterion is merely that the �rst pulse in

B(Z) be larger than the second. A more mathematical description of the state of

a�airs results from solving for the roots of B(Z), that is, �nd the values of Z

0

for

which B(Z

0

) = 0. For example 1 � Z=2 we �nd Z

0

= 2. For the example 1 � 2Z,

we �nd Z

0

=

1

2

. The general case for wavelets with complex coe�cients is that, if

the solution value Z

0

of B(Z

0

) = 0 lies inside the unit circle in the complex plane,

then 1=B(Z) will have coe�cients which blow up; and if the root lies outside the unit

circle, then the inverse 1=B(Z) will be bounded.

Figure 2.3: Factoring the polynomial B(Z) breaks the �lter into many two-term

�lters. Each one should have a bounded inverse. c2-2-3 [NR]

Recalling earlier discussion that a polynomial B(Z) of degree N may be factored

into N subsystems and that the ordering of subsystems is unimportant (see Fig-

ure 2.3), we suspect that if any of the N roots of B(Z) lies inside the unit circle

we may have di�culty with A(Z). Actual proof of this suspicion relies on a theorem

from complex-variable theory about absolutely convergent series. The theorem is that

the product of absolutely convergent series is convergent, and conversely the product

of any convergent series with a divergent series is divergent. Another proof may be

based upon the fact that a power series for 1=B(Z) converges in a circle about the

origin with a radius from the origin out to he �rst pole [the zero of B(Z) of smallest

magnitude]. Convergence of A(Z) on the unit circle means, in terms of �lters, that

the coe�cients of A(Z) are decreasing. Thus, if all the zeros of B(Z) are outside the

unit circle, we will get a convergent �lter from (2.8).

Can anything at all be done if there is one root or more inside the circle? An

answer is suggested by the example

1

1� 2Z

=

1

2Z

1

1� 1=2Z

= �

1

2Z

"

1 +

1

2Z

+

1

(2Z)

2

+ � � �

#

(2:11)

Equation (2.11) is a series expansion in 1=Z, that is, a Taylor series about in�nity.

It converges from Z = 1 all the way in to a circle of radius 1=2. This means that

the inverse converges on the unit circle where it must, if the coe�cients are to be

bounded. In terms of �lters it means that the inverse �lter must be one of those
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�lters which responds to future inputs and hence is not physically realizable but may

be used in computer simulation.

In the general case, then, one must factorB(Z) into two parts: B(Z) = B

out

(Z)B

in

(Z)

where B

out

contains roots outside the unit circle and B

in

contains the roots inside.

Then the inverse of B

out

is expressed as a Taylor series about the origin and the inverse

of B

in

is expressed as a Taylor series about in�nity. The �nal expression for 1=B(Z)

is called a Laurent expansion for 1=B(Z), and it converges on a ring surrounding

the unit circle. Cases with zeros exactly on the unit circle present special problems.

Sometimes you can argue yourself out of the di�culty but at other times roots on or

even near the circle may mean that a certain computing scheme won't work out well

in practice.

Finally, let us consider a mechanical interpretation. The stress (pressure) in a

material may be represented by x

t

, and the strain (volume charge) may be represented

by y

t

. The following two statements are equivalent; that is, in some situations they

are both true, and in other situations they are both false:

statement a The stress in a material may be expressed as a linear combination of

present and past strains. Likewise, the strain may be deduced from present and past

stresses.

statement b The �lter which relates stress to strain and vice versa has all poles

and zeros outside the unit circle.

EXERCISES:

1 Find the �lter which is inverse to (2�5Z+2Z

2

). You may just drop higher-order

powers of Z, but an exact expression for the coe�cients of any power of Z is

preferred. (Partial fractions is a useful, though not necessary, technique.) Sketch

the impulse response.

2 Show that multiplication by (1 � Z) in discretized time is analogous to time

di�erentiation in continuous time. Show that dividing by (1�Z) is analogous to

integration. What are the limits on the integral?

3 Describe a general method for determining A(Z) and B(Z) from a Taylor series

of B(Z)=A(Z) = C

0

+ C

1

Z + C

2

Z

2

+ � � � + C

1

Z

1

where B(Z) and A(Z) are

polynomials of unknown degree n andm, respectively. Work out the case C(Z) =

1

2

�

3

4

Z �

3

8

Z

2

�

3

16

Z

3

�

3

32

Z

4

� � � �. Don't try this problem unless you are quite

familiar with determinants. [hint: Identify coe�cients of B(Z) = A(Z)C(Z).]

2.2 MINIMUM PHASE

In Sec. 2-1 we learned that knowledge of convergence of the Taylor series of 1=B(Z)

on j Z j= 1 is equivalent to knowledge that B(Z) has no roots inside the unit circle.
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Now we will see that these conditions are also equivalent to a certain behavior of the

phase of B(Z) on the unit circle.

Let us consider the phase shift of the two-term �lter

B = 1�

Z

Z

0

(Z

0

= �e

i!

o

)

= 1� �

�1

e

i(!�!

o

)

= 1� �

�1

cos(! � !

o

)� i�

�1

sin(! � !

o

)

By de�nition, phase is the arctangent of the ratio of the imaginary part to the

real part.

A graph of phase as a function of frequency looks radically di�erent for � < 1

than for � > 1. See Figure 2.4 for the case � > 1.

Figure 2.4: Real and imaginary

parts of the Z transform 1 �

Z=(1:25e

i2�=3

): c2-2-4 [NR]

The phase is the arctangent of ImB=ReB. The easiest way to keep track of the

phase is in the complex B plane. This is shown in Figure 2.5.

Thus phase as a function of frequency is shown in Figure 2.6. Notice that the

phase � at ! = 0 is the same as the phase at ! = 2�. This follows because the real

and imaginary parts are periodic with 2�. The situation will be di�erent when there

is a zero inside the unit circle; that is, � < 1. The real and imaginary parts are shown

in Figure 2.7 and the complex plane in Figure 2.8.

The phase � increases by 2� as ! goes from zero to 2� because the circular path

surrounds the origin. The phase curve is shown in Figure 2.9. The case � > 1 where

�(!) = �(! + 2�) has come to be called minimum phase or minimum delay.

Now we are ready to consider a complicated �lter like

B(Z) =

(Z � c

1

)(Z � c

2

) � � �

(Z � a

1

)(Z � a

2

) � � �

(2:12)
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Figure 2.5: Phase of the two-term

�lter of Figure 2.4. c2-2-5 [NR]

Figure 2.6: The phase of a

two-term minimum-phase �lter.

c2-2-6 [NR]

Figure 2.7: Real and imag-

inary parts of the two-term

nonminimum-phase �lter, 1 �

1:25Ze

�i2�=3

. c2-2-7 [NR]
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Figure 2.8: Phase in complex

plane. c2-2-8 [NR]

Figure 2.9: The phase of a

two-term nonminimum-phase �l-

ter. c2-2-9 [NR]
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By the rules of complex-number multiplication the phase of B(Z) is the sum of the

phases in the numerator minus the sum of the phases in the denominator. Since we

are discussing realizable �lters the denominator factors must all be minimum phase,

and so the denominator phase curve is a sum of curves like Figure 2.6. The numerator

factors may or may not be minimum phase. Thus the numerator phase curve is a sum

of curves like either Figure 2.6 or Figure 2.9. If any factors at all are like Figure 2.9,

then the total phase will resemble Figure 2.9 in that the phase at ! = 2� will be

greater than the phase at ! = 0. Then the �lter will be nonminimum phase.

2.3 FILTERS IN PARALLEL

We have seen that in a cascade of �lters the �lter polynomials are multiplied together.

One might conceive of adding two polynomials A(Z) and G(Z) when they correspond

to �lters which operate in parallel. See Figure 2.10.

Figure 2.10: Filters operating in parallel. c2-2-10 [NR]

When �lters operate in parallel their Z transforms add together. We have seen

that a cascade of �lters is minimum phase if, and only if, each element of the product

is minimum phase. Now we will see a su�cient (but not necessary) condition that

the sum A(Z) + G(Z) be minimum phase. First of all, let us assume that A(Z) is

minimum phase. Then we may write

A(Z) +G(Z) = A(Z)

"

1 +

G(Z)

A(Z)

#

(2:13)

The question whether A(Z)+G(Z) is minimum phase is now reduced to determining

whether A(Z) and 1 +G(Z)=A(Z) are both minimum phase. We have assumed that

A(Z) is minimum phase. Before we ask whether 1 + G(Z)=A(Z) is minimum phase

we need to be sure that it is causal. Since 1=A(Z) is expandable in positive powers of

Z only, then G(Z)=A(Z) is also causal. We will next see that a su�cient condition

for 1 + G(Z)=A(Z) to be minimum phase is that the spectrum of A exceeds that of

G at all frequencies. In other words, for any real !, j A j>j G j. Thus, if we plot

the curve of G(Z)=A(Z) in the complex plane, for real 0 � ! � 2� it lies everywhere

inside the unit circle. Now if we add unity |getting 1 +G(Z)=A(Z), the curve will

always have a positive real part. See Figure 2.11.

Since the curve cannot enclose the origin, the phase must be that of a minimum-

phase function. In words, \You can add garbage to a minimum-phase wavelet if you
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Figure 2.11: Phase of a positive

real function lies between ��=2.

c2-2-11 [NR]

do not add too much." This somewhat abstract theorem has an immediate physical

consequence. Suppose a wave characterized by a minimum phase A(Z) is emitted

from a source and detected at a receiver some time later. At a still later time an echo

bounces o� a nearby object and is also detected at the receiver. The receiver sees the

signal Y (Z) = A(Z) +Z

n

�A(Z) where n measures the delay from the �rst arrival to

the echo and � represents the amplitude attenuation of the echo. To see that Y (Z)

is minimum phase, we note that the magnitude of Z

n

is unity and that the re
ection

coe�cient � must be less than unity (to avoid perpetual motion) so that Z

n

�A(Z)

takes the role of G(Z). Thus a minimum-phase wave along with its echo is minimum

phase. We will later consider wave propagation situations with echoes of the echoes

ad in�nitum.

EXERCISES:

1 Find two nonminimum-phase wavelets whose sum is minimum phase.

2 Let A(Z) be a minimum-phase polynomial of degree N . Let A

0

(Z) = Z

N

�

A(1=Z).

Locate in the complex Z plane the roots of A

0

(Z). A

0

(Z) is called maximum

phase. [hint: Work the simple case A(Z) = a

0

+ a

1

Z �rst.]

3 Suppose A(Z) is maximum phase and that the degree of G(Z) is less than or

equal to the degree of A(Z). Assume j A j>j G j. Show that A(Z) + G(Z) is

maximum phase.

4 Let A(Z) be minimum phase. Where are the roots of A(Z) + cZ

N

�

A(1=Z) in the

three cases j c j< 1; j c j> 1; j c j= 1? (hint: The roots of a polynomial are

continuous functions of the polynomial coe�cients.)

2.4 POSITIVE REAL FUNCTIONS

Two similar types of functions called admittance functions Y (Z) and impedance func-

tions I(Z) occur in many physical problems. In electronics, they are ratios of current
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to voltage and of voltage to current; in acoustics, impedance is the ratio of pressure

to velocity. When the appropriate electrical network or acoustical region contains no

sources of energy, then these ratios have the positive real property. To see this in

a mechanical example, we may imagine applying a known force F (Z) and observing

the resulting velocity V (Z). In �lter theory, it is like considering that F (Z) is input

to a �lter Y (Z) giving output V (Z). We have

V (Z) = Y (Z)F (Z) (2:14)

The �lter Y (Z) is obviously causal. Since we believe we can do it the other way

around, that is, prescribe the velocity and observe the force, there must exist a

convergent causal I(Z) such that

F (Z) = I(Z)V (Z) (2:15)

Since Y and I are inverses of one another and since they are both presumed bounded

and causal, then they both must be minimum phase.

First, before we consider any physics, note that if the complex number a+ ib has a

positive real part a, then the real part of (a+ ib)

�1

namely a=(a

2

+b

2

) is also positive.

Taking a + ib to represent a value of Y (Z) or I(Z) on the unit circle, we see the

obvious fact that if either Y or I has the positive real property, then the other does,

too.

Power dissipated is the product of force times velocity, that is

Power = � � � + f

0

v

0

+ f

1

v

1

+ f

2

v

2

+ � � � (2:16)

This may be expressed in terms of Z transforms as

Power =

1

2

coe� of Z

0

of V

�

1

Z

�

F (Z) + F

�

1

Z

�

V (Z)

=

1

2

1

2�

Z

+�

��

�

V

�

1

Z

�

F (Z) + F

�

1

Z

�

V (Z)

�

d! (2.17)

Using (2.14) to eliminate V (Z) we get

Power =

1

2

1

2�

Z

+�

��

F

�

1

Z

� �

Y

�

1

Z

�

+ Y (Z)

�

F (Z) d! (2:18)

We note that Y (Z)+Y (1=Z) looks super�cially like a spectrum because the coe�cient

of Z

k

equals that of Z

�k

, which shows the symmetry of an autocorrelation function.

De�ning

R(Z) = Y (Z) + Y

�

1

Z

�

(2:19)

(2.17) becomes

Power =

1

2

1

2�

Z

+�

��

R(Z)F

�

1

Z

�

F (Z) d! (2:20)
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The integrand is the product of the arbitrary positive input force spectrum and

R(Z). If the power dissipation is expected to be positive at all frequencies (for all

�

FF ), then obviously R(Z) must be positive at all frequencies; thus R is indeed a

spectrum. Since we have now discovered that Y (Z) and Y (1=Z) must be positive

for all frequencies, we have discovered that Y (Z) is not an arbitrary minimum-phase

�lter. The real part of both Y (Z) and Y (1=Z) is

Re[Y (Z)] = Re

�

Y

�

1

Z

��

= y

o

+ y

1

cos ! + y

2

cos 2! + � � � (2:21)

Since the real part of the sum must be positive, then obviously the real part of each

of the equal parts be positive.

Now if the material or mechanism being studied is passive (contains no energy

sources) then we must have positive dissipation over a time gate from minus in�nity

up to any time t. Let us �nd an expression for dissipation in such a time gate. For

simplicity take both the force and velocity vanishing before t = 0. Let the end of the

time gate include the point t = 2 but not t = 3.

De�ne

f

0

t

=

(

f

t

t � 2

0 t > 2

(2:22)

To �nd the work done over all time we may integrate (2.20) over all frequencies.

To �nd the work done in the selected gate we may replace F by F

0

and integrate over

all frequencies, namely

W

2

=

1

2

1

2�

Z

+�

��

F

0

�

1

Z

�

R(Z)F

0

(Z) d! (2:23)

As we have seen, this integral merely selects the coe�cient of Z

0

of the integrand.

Let us work this out. First, collect coe�cients of powers of Z in R(Z)F

0

(Z). We have

Z

0

: r

o

f

0

0

+ r

�1

f

0

1

+ r

�2

f

0

2

Z

1

: r

1

f

0

0

+ r

0

f

0

1

+ r

�1

f

0

2

Z

2

: r

2

f

0

0

+ r

1

f

0

1

+ r

0

f

0

2

To obtain the coe�cient of Z

0

in F

0

(1=Z)[R(Z)F

0

(Z)] we must multiply the top row

above by f

0

0

, the second row by f

0

1

and the third row by f

0

2

. The result can be arranged

in a very orderly fashion by

W

2

=

1

2

[f

0

f

1

f

2

]

2

6

4

r

0

r

�1

r

�2

r

1

r

0

r

�1

r

2

r

1

r

0

3

7

5

2

6

4

f

0

f

1

f

2

3

7

5

=

1

2

[f

0

f

1

f

2

]

2

6

4

2y

0

y

1

y

2

y

1

2y

0

y

1

y

2

y

1

2y

0

3

7

5

2

6

4

f

0

f

1

f

2

3

7

5

(2.24)
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Not only must the 3 x 3 quadratic form (2.24) be positive (i.e., W

2

� 0 for arbitrary

f

t

) but all t � t similar quadratic forms W

t

must be positive.

In conclusion, the positive real property in the frequency domain means that

Y (Z) + Y (1=Z) is positive for any real ! and the positive real property in the time

domain means that all t�tmatrices like that of (2.24) are positive de�nite. Figure 2.12

summarizes the function types which we have considered.

Figure 2.12: Important classes of time functions. c2-2-12 [NR]

EXERCISES:

1 In mechanics we have force and velocity of a free unit mass related by dv=dt = f

or v =

R

t

�1

fdt. Compute the power dissipated as a function of frequency if

integration is approximated by convolution with (:5; 1:; 1:; 1:; :::): [hint: Expand

(1 + Z)=2(1� Z) in positive powers of Z.]

2 Construct an example of a simple function which is minimum phase but not

positive real.

2.5 NARROW-BAND FILTERS

Filters are often used to modify the spectrum of given data. With input X(Z), �lters

B(Z), and output Y (Z) we have Y (Z) = B(Z)X(Z) and the Fourier conjugate

�

Y (1=Z) =

�

B(1=Z)

�

X(1=Z). Multiplying these two relations together we get

Y Y = (

�

BB)(

�

XX) (2:25)
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which says that the spectrum of the input times the spectrum of the �lter equals the

spectrum of the output. Filters are often characterized by the shape of their spectra.

Some examples are shown in Figure (2.13).

Figure 2.13: Spectra of various �lters. c2-2-13 [NR]

We will have frequent occasion to deal with sinusoidal time functions. A simple

way to represent a sinusoid by Z transforms is

1

1� Ze

i!

0

= 1 + Ze

i!

0

+ Z

2

e

i2!

0

+ � � � (2:26)

The time function associated with this Z transform is e

i!

0

t

, but it is \turned on" at

t = 0. Actually, the left-hand side of (2.26) contains a pole exactly on the unit circle,

so that the series sits on the borderline between convergence and divergence. This

can cause paradoxical situations [you could expand (2.26) so that the sinusoid turns

o� at t = 0] which we will avoid by pushing the pole from the unit circle to a small

distance " outside the unit circle. Let Z

0

= (1 + ")e

i!

0

: Then de�ne

B(Z) =

1

A(Z)

=

1

1� Z=Z

0

= 1 +

Z

Z

0

+

�

Z

Z

0

�

2

+ � � � (2.27)

The time function corresponding to B(Z) is zero before t = 0 and is e

�i!

0

t

=(1 + ")

t

after t = 0. It is a sinusoidal function which decreases gradually with time according

to (1 + ")

�t

. The coe�cients are shown in Figure 2.14.
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Figure 2.14: The time function as-

sociated with a simple pole just

outside the unit circle at Z

0

=

1:1e

i�=5

. c2-2-14 [NR]

It is intuitively obvious, although we will prove it later, that convolution with the

coe�cients of (2.27), which are sketched in Figure 2.14, is a narrow-banded �ltering

operation. If the pole is chosen very close to the unit circle, the �lter bandpass

becomes narrower and the coe�cients of B(Z) drop o� more and more slowly. To

actually perform the convolution it is necessary to truncate, that is, to drop powers

of Z beyond a certain practical limit. It turns out that there is a very much cheaper

method of narrow-band �ltering than convolution with the coe�cients of B(Z). This

method is polynomial division by A(Z). We have for the output Y (Z)

Y (Z) = B(Z)X(Z) (2.28)

Y (Z) =

X(Z)

A(Z)

(2.29)

Multiply both sides of (2.29) by A(Z)

Y (Z)A(Z) = X(Z) (2:30)

For de�niteness, let us suppose the x

t

and y

t

vanish before t = 0. Now identify

coe�cients of successive powers of Z. We get

y

0

a

0

= x

0
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y

1

a

0

+ y

0

a

1

= x

1

y

2

a

0

+ y

1

a

1

+ y

0

a

2

= x

2

(2.31)

y

3

a

0

+ y

2

a

1

+ y

1

a

2

+ y

0

a

3

= x

3

y

4

a

0

+ y

3

a

1

+ y

2

a

2

+ y

1

a

3

= x

4

� � �

A general equation is

y

k

a

0

+

1

X

i=1

y

k�i

a

i

= x

k

(2:32)

Solving for y

k

we get

y

k

=

x

k

�

1

P

i=1

y

k�i

a

i

a

0

(2:33)

Equation (2.33) may be used to solve for y

k

once y

k�1

; y

k�2

; � � � are known. Thus the

solution is recursive, and it will not diverge if the a

i

are coe�cients of a minimum-

phase polynomial. In practice the in�nite limit on the sum is truncated whenever

you run out of coe�cients of either A(Z) or Y (Z). For the example we have been

considering, B(Z) = 1=A(Z) = 1=(1�Z=Z

0

), there will be only one term in the sum.

Filtering in this way is called feedback �ltering, and for narrowband �ltering it will

be vastly more economical than �ltering by convolution, since there are much fewer

coe�cients in A(Z) than B(Z) = 1=A(Z). Finally, let us examine the spectrum of

B(Z). We have

A(Z) = 1�

Z

Z

0

= 1�

e

i!

(1 + ")e

i!

0

= 1�

e

i(!�!

0

)

(1 + ")

and

�

A

�

1

Z

�

= 1�

e

�i(!�!

0

)

1 + "

so

�

A

�

1

Z

�

A(Z) =

 

1�

e

�i(!�!

0

)

1 + "

! 

1�

e

i(!�!

0

)

1 + "

!

= 1 +

1

(1 + ")

2

�

1

1 + "

(e

�i(!�!

0

)

+ e

i(!�!

0

)

)

= 1 +

1

(1 + ")

2

�

2 cos(! � !

0

)

1 + "
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= 1 +

1

(1 + ")

2

�

2

1 + "

+

2

1 + "

[1� cos (! � !

0

)]

=

�

1�

1

1 + "

�

2

+

4

1 + "

sin

2

! � !

0

2

�

B

�

1

Z

�

B(Z) =

(1 + ")

2

"

2

+ 4(1 + ") sin

2

�

!�!

0

2

�

(2.34)

To a good approximation this function may be thought of as 1=["

2

+ (! � !

0

)

2

]: A

plot of (2.34) is shown in Figure 2.15.

Figure 2.15: Spectrum associated

with a single pole at Z

0

= (1 +

")e

i!

0

. c2-2-15 [NR]

Now it should be apparant why this is called a narrowband �lter. It ampli�es a

vary narrow band of frequencies and attenuates all others. The frequency window of

this �lter is said to be �! � 2" in width. The time window is �t = 1=", the damping

time constant of the dampend sinusoid b

t

.

One practical disadvantage of the �lter under discussion is that although its in-

put may be a real time series its output will be a complex time series. For many

applications a �lter with real coe�cients may be preferred.

One approach is to follow the �lter [1; e

i!

0

=(1 + ")] by the time-domain, com-

plex conjugate �lter [1; e

�i!

0

=(1 + ")]. The composit time-domain operator is now

[1; (2 cos!

0

)=(1 + "); 1=(1 + ")

2

] which is real. [Note that the complex conjugate in

the frequency domain is

�

B(1=Z) but in the time domain it is

�

B(Z) =

�

b

0

+

�

b

1

Z + � � �].

The composite �lter may be denoted by B(Z)

�

B(Z). The spectrum of this �lter is

[B(Z)

�

B(1=Z)][

�

B(Z)B(1=Z)]. One may quickly verify that the spectrum of

�

B(Z) is

like that of B(Z), but the peak is at �!

0

instead of +!

0

. Thus, the composite spec-

trum is the product of Figure 2.15 with itself reversed along the frequency axis. This

is shown in Figure 2.16.
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Figure 2.16: Spectrum of a two-

pole �lter where one pole is like

Figure 2.15 and the other is at the

conjugate position. c2-2-16 [NR]

EXERCISES:

1 A simple feedback operation is y

t

= (1�")y

t�1

+x

t

. This operation is called leaky

integration. Give a closed form expression for the output y

t

if x

t

is an impulse.

What is the decay time � of your solution (the time it takes for y

t

to drop to

e

�1

y

0

)? For small ", say = 0.1, .001, or 0.0001, what is �?

2 How far from the unit circle are the poles of 1=(1 � :1Z + :9Z

2

)? What is the

decay time of the �lter and its resonant frequency?

3 Find a three-term real feedback �lter to pass 59-61 Hz on data which are sampled

at 500 points/sec. Where are the poles? What is the decay time of the �lter?

2.6 ALL-PASS FILTERS

In this section we consider �lters with constant unit spectra, that is, B(Z)

�

B(1=Z) = 1.

In other words, in the frequency domain B(Z) takes the form e

i�(!)

where � is real

and is called the phase shift. Clearly B

�

B = 1 for all real �. It is an easy matter to

construct a �lter with any desired phase shift; one merely Fourier transforms e

i�(!)

into the time domain. If �(!) is arbitrary, the resulting time function is likely to be

two-sided. Since we are interested in physical processes which are causal, we may

wonder what class of functions �(!) corresponds to one-sided time functions. The

easiest way to proceed is to begin with a simple case of a single-pole, single-zero all-

pass �lter. Then more elaborate all-pass �lters can be made up by cascading these

simple �lters. Consider the �lter
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P (Z) =

Z � 1=(

�

Z)

0

1� Z=Z

0

(2:35)

Note that this is a simple case of functions of the form Z

N

�

A(1=Z)=A(Z), where A(Z)

is a polynomial of degree N or less. Now observe that the spectrum of the �lter p

t

is

indeed a frequency-independent constant. The spectrum is

�

P

�

1

Z

�

P (Z) =

1=Z � 1=Z

0

1� 1=(Z

�

Z

0

)

Z � 1=

�

Z

0

Z � 1=Z

0

(2:36)

Multiply top and bottom on the left by Z. We now have

�

P

�

1

Z

�

P (Z) =

1� Z=Z

0

Z � 1=

�

Z

0

Z � 1=

�

Z

0

1� Z=Z

0

= 1 (2:37)

It is easy to show that

�

P (1=Z)P (Z) = 1 for the general form P (Z) = Z

N

�

A(1=Z)=A(Z).

If Z

0

is chosen outside the unit circle, then the denominator of (2.35) can be expanded

in positive powers of Z and the expansion in convergent on the unit circle. This means

that causality is equivalent to Z

0

outside the unit circle. Setting the numerator of

P (Z) equal to zero, we discover that the zero Z = 1=

�

Z

0

is then inside the unit circle.

The situation is depicted in Figure 2.17. To see that the pole and zero are on the

same radius line, express Z

0

in polar form r

0

e

i�

0

.

Figure 2.17: The pole of the

all-phase �lter lies outside the

unit circle and the zero is inside.

They lie on the same radius line.

c2-2-17 [NR]

From Section 2.2 (on minimum phase) we see that the numerator of P is not

minimum phase and its phase is augmented by 2� as ! goes from 0 to 2�. Thus the

average delay d�=d! is positive. Not only is the average positive but, in fact, the

group delay turns out to be positive in every frequency. To see this, �rst note that

Z = e

i!
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dZ

d!

= ie

i!

= iZ

d

d!

=

dZ

d!

d

dZ

= iZ

d

dZ

(2.38)

The phase of the all-pass �lter (or any complex number) may be written as

� = ln P (Z) (2:39)

Since jP j = 1 the real part of the log vanishes; and so, for the all-pass �lter (only) we

may specialize (2.39) to

� =

1

i

lnP (Z) =

1

i

ln

Z � 1=

�

Z

0

1� Z=Z

0

=

1

i

�

ln

�

Z �

1

Z

0

�

� ln

�

1�

Z

Z

0

��

(2.40)

Using (2.38) the group delay is now found to be

�

g

=

d�

d!

= iZ

d�

dZ

= Z

 

1

Z � 1=

�

Z

0

+

1=Z

0

1� Z=Z

0

!

=

1

1� 1=

�

Z

0

Z

+

Z=Z

0

1� Z=Z

0

=

1� Z=Z

0

+ (1� 1=

�

Z

0

Z)(Z=Z

0

)

(1� 1=

�

Z

0

Z)(1� Z=Z

0

)

=

1� 1=Z

0

�

Z

0

(1� 1=

�

Z

0

Z)(1� Z=Z

0

)

(2.41)

The numerator of (2.41) is a positive real number (since jZ

0

j > 1), and the denom-

inator is of the form

�

A(1=Z)A(Z), which is a spectrum and also positive. Thus we

have shown that the group delay of this causal all-pass �lter is always positive.

Now if we take a �lter and follow it will an all-pass �lter, the phases add and

the group delay of the composite �lter must necessarily be greater than the group

delay of original �lter. By the same reasoning the minimum-phase �lter must have

less group delay than any other �lter with the same spectrum.

In summary, a single-pole, single-zero all-pass �lter passes all frequency compo-

nents with constant gain and a phase shift which may be adjusted by the placement

of a pole. Taking Z

0

near the unit circle causes most of the phase shift to be con-

centrated near the frequency where the pole is located. Taking the pole further away

causes the delay to be spread over more frequencies. Complicated phase shifts or

group delays may be built up by cascading several single-pole �lters.

EXERCISES:

1 An example of an all-pass �lter is the time function p

t

= (

1

2

;�

3

4

;�

3

8

;�

3

16

; � � �).

Calculate a few lags of its autocorrelation by summing some in�nite series.
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2 Sketch the amplitude, phase, and group delay of the all-pass �lter (1�

�

Z

0

Z)=(Z

0

�

Z) where Z

0

= (1 + ")e

i!

0

and " is small. Indicate important parameters on the

curve.

3 Show that the coe�cients of an all-pass, phase-shifting �lter made by cascading

(1�

�

Z

0

Z)=(Z

0

� Z) with (1� Z

0

Z)=(

�

Z

0

� Z) are real.

4 A continuous time function is the impulse response of a continuous-time, all-

pass �lter. Describe the function in both time domain and frequency domain.

Interchange the words time and frequency in your description of the function.

What is a physical example of such a function? What happens to the statement:

\The group delay of an all-pass �lter is positive."?

5 A graph of the group delay �

g

(!) in equation (2.41) shows �

g

to be positive for

all !. What is the area under �

g

in the range 0 < ! < 2�. (hint: This is a trick

question you can solve in your head.)

2.7 NOTCH FILTER AND POLE ON PEDESTAL

In some applications it is desired to reject a very narrow frequency band leaving the

rest of the spectrum little changed. The most common example is 60-Hz noise from

power lines. Such a �lter can easily be made with a slight variation on the all-pass

�lter. In the all-pass �lter the pole and zero have an equal (logarithmic) relative

distance from the unit circle. All we need to do is to put the zero closer to the circle.

In fact, there is no reason why we should not put the zero right on the circle. Then

the frequency at which the zero is located is exactly canceled from the spectrum of

input data. If the undesired frequency need not be completely rejected, then the

zero can be left just inside or outside the circle. As the zero is moved farther away

from the circle, the notch becomes less deep until �nally the zero is farther from the

circle than the pole and the notch has become a hump. The resulting �lter which

will be called pole on pedestal is in many respects like the narrowband �lter discussed

earlier. Some of these �lters are illustrated in Figures 2.18 and 2.19. The di�erence

between the pole-on-pedestal and the narrowband �lters is in the asymptotic behavior

away from !

0

. The former is 
at, while the latter continues to decay with increasing

j !�!

0

j. This makes the pole on pedestal more convenient for creating complicated

�lter shapes by cascades of single-pole �lters.

Figure 2.18: Pole and zero loca-

tions for some simple �lters. Cir-

cles are unit circles in the Z plane.

Poles are marked by X and zeros

by 0. c2-2-18 [NR]
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Figure 2.19: Amplitude vs. fre-

quency for narrowband �lter (NB)

and pole-on-pedestal �lter (PP).

Each has one pole at Z

0

=

1:2e

i�=3

. A second pole at Z

0

=

1:2e

�i�=3

enables the �lters to be

real in the time domain. c2-2-19

[NR]

Narrowband �lters and sharp cuto� �lters should be used with caution. An ever-

present penalty for such �lters is that they do not decay rapidly in time. Although

this may not present problems in some applications, it will do so in others. Obviously,

if the data collection duration is shorter or comparable to the impulse response of

the narrowband �lter, then the transient e�ects of starting up the experiment will

not have time to die out. Likewise, the notch should not be too narrow in a 60-

Hz rejection �lter. Even a bandpass �lter (easier to implement with fast Fourier

transform than with a few poles) has a certain decay rate in the time domain which

may be too slow for some experiments. In radar and in re
ection seismology the

importance of a signal is not related to its strength. Late-arriving echoes may be

very weak, but they contain information not found in earlier echoes. If too sharp a

frequency characteristic is used, then �lter resonance from early strong arrivals may

not have decayed su�ciently by the time that the weak late echoes arrive.

EXERCISES:

1 Consider a symmetric (nonrealizable) �lter which passes all frequencies less than

!

0

with unit gain. Frequencies above !

0

are completely attenuated. What is the

rate of decay of amplitude with time for this �lter?

2 Waves spreading from a point source decay in energy as the area on a sphere. The

amplitude decays as the square root of energy. This implies a certain decay in

time. The time-decay rate is the same if the waves re
ect from planar interfaces.

To what power of time t do the signal amplitudes decay? For waves backscattered

to the source from point re
ectors, energy decays as distance to the minus fourth

power. What is the associated decay with time?
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3 Discuss the use of the �lter of Exercise 1 on the data of Exercise 2.

4 Design a single-pole, single-zero notch �lter to reject 59 to 61 Hz on data which

are sampled at 500 points per second.

2.8 THE BILINEAR TRANSFORM

Z transforms and Fourier transforms are related by the relations Z = e

i!

and i! =

lnZ. A problem with these relations is that simple ratios of polynomials in Z do not

translate to ratios of polynomials in ! and vice versa. The approximation

� i!̂ = 2

1� Z

1+ Z

(2:42)

is easily solved for Z as

Z =

1 + !̂=2

1� !̂=2

(2:43)

These approximations are often useful. They are truncations of the exact power series

expansions

� i! = � ln e

i!

= � ln Z = 2

"

1� Z

1 + Z

+

1

3

(1� Z)

3

(1 + Z)

3

+

1

5

� � �

#

(2:44)

and

Z = e

i!

=

e

i!=2

e

�i!=2

=

1 + i!=2 + (i!=2)

2

=2! + � � �

1� i!=2 + (i!=2)

2

=2! + � � �

(2:45)

For a Z transform B(Z) to be minimum phase, any root Z

0

of 0 = B(Z

0

) should

be outside the unit circle. Since Z

0

= expfi[Re(!

0

)+ i Im(!

0

)]g and j Z

0

j= e

�Im(!

0

)

,

it means that for a minimum phase Im (!

0

) should be negative. (In other words, !

0

is in the lower half-plane.) Thus it may be said that Z = e

i!

maps the exterior of

the unit circle to the lower half-plane. By inspection of Figures 2.20 and 2.21, it is

found that the bilinear approximation (2.42) or (2.43) also maps the exterior of the

unit circle into the lower half-plane.

Thus, although the bilinear approximation is an approximation, it turns out to ex-

actly preserve the minimum-phase property. This is very fortunate because if a stable

di�erential equation is converted to a di�erence equation via (2.42), the resulting dif-

ference equation will be stable. (Many cases may be found where the approximation

of a time derivative by multiplication with 1� Z would convert a stable di�erential

equation into an unstable di�erence equation.)

A handy way to remember (2.42) is that �i! corresponds to time di�erentiation

of a Fourier transform and (1� Z) is the �rst di�erencing operator. The (1 + Z) in

the denominator gets things \centered" at Z

1=2

To see that the bilinear approximation is a low-frequency approximation, multiply

top and bottom of (2.42) by Z

�1=2
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Figure 2.20: Some typical points

in the Z-plane, the !-plane, and

the !̂-plane. c2-2-20 [NR]

�i!̂ = 2

Z

�1=2

� Z

1=2

Z

�1=2

+ Z

1=2

= �2i

sin !=2

cos !=2

!̂ = 2 tan !=2 (2.46)

Equation (2.46) implicitly refers to a sampling rate of one sample per second. Taking

an arbitrary sampling rate �t, the approximation (2.46) becomes

!�t � 2 tan !�t=2 (2:47)

This approximation is plotted in Figure 2.22. Clearly, the error can be made as small

as one wishes merely by sampling often enough; that is, taking �t small enough.

From Figure 2.22 we see that the error will be only a few percent if we choose

�t small enough so that !

max

�t � 1. Readers familiar with the folding theorem will

recall that it gives the less severe restraint !

max

�t < �. Clearly, the folding theorem

is too generous for applications involving the bilinear transform.

Now, by way of example, let us take up the case of a pole 1=�i! at zero frequency.

This is integration. For reasons which will presently be clear, we will consider the

slightly di�erent pole

P =

1

�i! + "

(2:48)

where " is small. Inserting the bilinear transform, we get

P =

1

2[(1� Z)=(1 + Z)] + "

=

0:5(1 + Z)

1� Z + "[(1 + Z)=2]

=

0:5(1 + Z)

(1 + "=2)� Z(1� "=2)

(2.49)
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Figure 2.21: The points of Figure 2.20 displayed in the Z plane, the ! plane, and the

!̂-plane. c2-2-21 [NR]
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Figure 2.22: The accuracy of the

bilinear transformation approxi-

mation. c2-2-22 [NR]

By inspection of (2.49) we see that the time-domain function is real, and as " goes

to zero it takes the form (.5, 1, 1, 1, ...). (Taking " positive forces the step to go out

into positive time, whereas " negative would cause the step to rise at negative time.)

The properties of this function are summarized in Figure 2.23.

EXERCISES:

1 In the solution to di�usion problems, the factor F (!) = 1=(�i!)

1=2

often arises as

a multiplier. To see the equivalent convolution operation, �nd a causal, sampled-

time representation f

t

of F (!) by identi�cation of powers of Z in

(f

0

+ f

1

Z + f

2

Z

2

+ � � �)

2

= 1=(�i!) '

1

2

(1 + Z)=(1� Z)

(2.50)

Solve numerically for f

0

through f

7

.
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Figure 2.23: Properties of the integration operator. c2-2-23 [NR]



Chapter 3

Spectral factorization

As we will see, there is an in�nite number of time functions with any given spectrum.

Spectral factorization is a method of �nding the one time function which is also

minimum phase. The minimum-phase function has many uses. It, and it alone, may

be used for feedback �ltering. It will arise frequently in wave propagation problems

of later chapters. It arises in the theory of prediction and regulation for the given

spectrum. We will further see that it has its energy squeezed up as close as possible to

t = 0. It determines the minimum amount of dispersion in viscous wave propagation

which is implied by causality. It �nds application in two-dimensional potential theory

where a vector �eld magnitude is observed and the components are to be inferred.

This chapter contains four computationally distinct methods of computing the

minimum-phase wavelet from a given spectrum. Being distinct, they o�er separate

insights into the meaning of spectral factorization and minimum phase.

3.1 ROOT METHOD

The time function (2, 1) has the same spectrum as the time function (1, 2). The

autocorrelation is (2, 5, 2). We may utilize this observation to explore the multiplicity

of all time functions with the same autocorrelation and spectrum. It would seem that

the time reverse of any function would have the same autocorrelation as the function.

Actually, certain applications will involve complex time series; therefore we should

make the more precise statement that any wavelet and its complex-conjugate time-

reverse share the same autocorrelation and spectrum. Let us verify this for simple

two-point time functions. The spectrum of (b

0

; b

1

) is

�

B

�

1

Z

�

B(Z) =

 

�

b

0

+

�

b

1

Z

!

(b

0

+ b

1

Z)

=

�

b

1

b

0

Z

+ (

�

b

0

b

0

+

�

b

1

b

1

) +

�

b

0

b

1

Z (3.1)

41
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The conjugate-reversed time function (

�

b

1

;

�

b

0

) with Z transform B

r

(Z) =

�

b

1

+

�

b

0

Z has

a spectrum

�

B

r

�

1

Z

�

B

r

(Z) =

 

b

1

+

b

0

Z

!

(

�

b

1

+

�

b

0

Z)

=

b

0

�

b

1

Z

+ (b

0

�

b

0

+ b

1

�

b

1

) + b

1

�

b

0

Z (3.2)

We see that the spectrum (3.1) is indeed identical to (3.2). Now we wish to extend the

idea to time functions with three and more points. Full generality may be observed

for three-point time functions, say B(Z) = b

0

+ b

1

Z + b

2

Z

2

. First, we call upon

the fundamental theorem of algebra (which states that a polynomial of degree n has

exactly n roots) to write B(Z) in factored form

B(Z) = b

2

(Z

1

� Z)(Z

2

� Z) (3:3)

Its spectrum is

R(Z) =

�

B

�

1

Z

�

B(Z) =

�

b

2

b

2

�

�

Z

1

�

1

Z

�

(Z

1

�Z)

�

�

Z

2

�

1

Z

�

(Z

2

�Z) (3:4)

Now, what can we do to change the wavelet (3.3) which will leave its spectrum

(3.4) unchanged? Clearly, b

2

may be multiplied by any complex number of unit

magnitude. What is left of (3.4) can be broken up into a product of factors of form

(

�

Z

i

�1=Z)(Z

i

�Z). But such a factor is just like (3.3). The time function of (Z

i

�Z)

is (Z

i

;�1), and its complex-conjugate time-reverse is (�1+

�

Z

i

Z). In a generalization

of (3.3) there could be N factors [(Z

i

� Z); i = 1; 2; : : : ; N ]. Any combination of

them could be reversed. Hence there are 2

N

di�erent wavelets which may be formed

by reversals, and all of the wavelets have the same spectrum. Let us look o� the unit

circle in the complex plane. The factor (Z

i

�Z) means that Z

i

is a root of both B(Z)

and R(Z). If we replace (Z

i

�Z) by (�1+

�

Z

i

Z) in B(Z), we have removed a root at

Z

i

from B(Z) and replaced it by another at Z = 1=

�

Z

i

. The roots of R(Z) have not

changed a bit because there were originally roots at both Z

i

and 1=

�

Z

i

and the reversal

has merely switched them around. Summarizing the situation in the complex plane,

B(Z) has roots Z

i

which occur anywhere, R(Z) must have all the roots Z

i

and, in

addition, the roots 1=

�

Z

i

. Replacing some particular root Z

i

by 1=

�

Z

i

changes B(Z)

but not R(Z). The operation of replacing a root at Z

i

by one at 1=

�

Z

i

may be written

as

B

0

(Z) =

Z � 1=

�

Z

i

1� Z=Z

i

B(Z) (3:5)

The multiplying factor is none other than the all-pass �lter considered in an earlier

chapter. With that in mind, it is obvious that B

0

(Z) has the same spectrum as B(Z).

In fact, there is really no reason for Z

i

to be a root of B(Z). If Z

i

is a root of B(Z),

then B

0

(Z) will be a polynomial; otherwise it will be an in�nite series.
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Now let us discuss the calculation of B(Z) from a given R(Z). First, the roots

of R(Z) are by de�nition the solutions to R(Z) = 0. If we multiply R(Z) by Z

N

(where R(Z) has been given up to degree N), then Z

N

R(Z) is a polynomial and the

solutions Z

i

to Z

N

R(Z) = 0 will be the same as the solutions of R(Z) = 0. Finding

all roots of a polynomial is a standard though di�cult task. Assuming this to have

been done we may then check to see if the roots come in the pairs Z

i

and 1=

�

Z

i

. If

they do not, the R(Z) was not really a spectrum. If they do, then for every zero

inside the unit circle, we must have one outside. Refer to Figure 3.1.

Figure 3.1: Roots of

�

B(1=Z)B(Z). c3-3-1 [NR]

Thus, if we decide to make B(Z) be a minimum-phase wavelet with the spectrum

R(Z), we collect all of the roots outside the unit circle. Then we create B(Z) with

B(Z) = b

N

(Z � Z

1

) (Z � Z

2

) � � � (Z � Z

N

) (3:6)

This then summarizes the calculation of a minimum-phase wavelet from a given

spectrum. When N is large, it is computationally very awkward compared to methods

yet to be discussed. The value of the root method is that it shows certain basic

principles.

1. Every spectrum has a minimum-phase wavelet which is unique within a complex

scale factor of unit magnitude.

2. There are in�nitely many time functions with any given spectrum.

3. Not all functions are possible autocorrelation functions.

The root method of spectral factorization was apparently developed by economists

in the 1920s and 1930s. A number of early references may be found in Wold's book,

Stationary Time Series.
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EXERCISES:

1 How can you �nd the scale factor b

N

in (3.6)?

2 Compute the autocorrelation of each of the four wavelets (4; 0;�1), (2; 3;�2),

(�2; 3; 2), (1; 0;�4).

3 A power spectrum is observed to �t the form P (!) = 38 + 10 cos! � 12 cos 2!.

What are some wavelets with this spectrum? Which is minimum phase? (HINT:

cos 2! = 2 cos

2

! � 1; 2 cos! = Z + 1=Z; use quadratic formula.)

4 Show that if a wavelet b

t

= (b

0

; b

1

; : : : ; b

n

) is real, the roots of the spectrum R

come in the quadruplets Z

0

, 1=Z

0

,

�

Z

0

, and 1=

�

Z

0

. Look into the case of roots

exactly on the unit circle and on the real axis. What is the minimum multiplicity

of such roots?

3.2 ROBINSON'S ENERGY DELAY THEOREM

We will now show that a minimum-phase wavelet has less energy delay than any

other one-side wavelet with the same spectrum. More precisely, we will show that the

energy summed from zero to any time t for the minimum-phase wavelet is greater than

or equal to that of any other wavelet with the same spectrum. Refer to Figure 3-2.

Figure 3.2: Percent of total energy

in a �lter between time 0 and time

t. c3-3-2 [NR]

We will compare two wavelets P

in

and P

out

which are identical except for one zero,

which is outside the unit circled for P

out

and inside for P

in

. We may write this as

P

out

(Z) = (b+ sZ)P (Z)

P

in

(Z) = (s+ bZ)P (Z)

where b is bigger than s and P is arbitrary but of degree n. Next we tabulate the

terms in question.
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t P

out

P

in

P

2

out

� P

2

in

P

t

k=0

(P

2

out

� P

2

in

)

0 bp

0

sp

0

(b

2

� s

2

) p

0

2

(b

2

� s

2

) p

0

2

1 bp

1

+ sp

0

sp

1

+ bp

0

(b

2

� s

2

) (p

1

2

� p

0

2

) (b

2

� s

2

) p

1

2

.

.

.

.

.

.

k bp

k

+ sp

k�1

sp

k

+ bp

k�1

(b

2

� s

2

) (p

k

2

� p

2

k�1

) (b

2

� s

2

) p

k

2

.

.

.

.

.

.

n+ 1 sp

n

bp

n

(b

2

� s

2

)(�p

n

2

) 0

The di�erence, which is given in the right-hand column, is clearly always positive.

To prove that the minimum-phase wavelet delays energy the least, the preceding

argument is repeated with each of the roots until they are all outside the unit circle.

EXERCISES:

1 Do the foregoing minimum-energy-delay proof for complex-valued b, s, and P .

[CAUTION: Does P

in

= (s+ bZ)P or P

in

= (�s+

�

bZ)P?]

3.3 THE TOEPLITZ METHOD

The Toeplitz method of spectral factorization is based on special properties of Toeplitz

matrices In this chapter we introduce the Toeplitz matrix to perform spectral factor-

ization. In later chapters we will refer back several times to the algebra described

here. When one desires to predict a time series, one can do this with a so-called pre-

diction �lter. This �lter is found as the solution to Toeplitz simultaneous equations.

Norman Levinson, in his explanatory appendix of Norbert Wiener's Time Series, �rst

introduced the Toeplitz matrix to engineers; however, it had been widely known and

used previously in the �eld of econometrics. It is only natural that it should appear

�rst in economics because there the data are observed at discrete time points, whereas

in engineering the idea of discretized time was rather arti�cial until the advent of dig-

ital computers. The need for prediction in economics is obvious. In seismology, it is

not the prediction itself but the error in prediction which is of interest. Re
ection

seismograms are used in petroleum exploration. Ideally, the situation is like radar

where the delay time is in direct proportion to physical distance. This is the case for

the so-called primary re
ections. A serious practical complication arises in shallow

seas where large acoustic waves bounce back and forth between the sea surface and

the sea 
oor. These are called multiple re
ections. A mechanism for separation of

the primary waves from the multiple re
ections is provided by prediction. A multiple

re
ection is predictable from earlier echoes, but a primary re
ection is not predictable

from earlier echoes. Thus, the useful information is carried in the part of the seis-

mogram which is not predictable. An oil company computer devoted to interpreting

seismic exploration data typically solves about 100,000 sets of Toeplitz simultaneous

equations in a day.

Another important application of the algebra associated with Toeplitz matrices
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is in high-resolution spectral analysis. This is where a power spectrum is to be

estimated from a sample of data which is short (in time or space). The conventional

statistical and engineering knowledge in this subject is based on assumptions which

are frequently inappropriate in geophysics. The situation was fully recognized by John

P. Burg who utilized some of the special properties of Toeplitz matrices to develop

his maximum-entropy spectral estimation procedure described in a later chapter.

Another place where Toeplitz matrices play a key role is in the mathematical

physics which describes layered materials. Geophysicists often model the earth by a

stack of plane layers or by concentric spherical shells where each shell or layer is ho-

mogeneous. Surprisingly enough, many mathematical physics books do not mention

Toeplitz matrices. This is because they are preoccupied with forward problems; that

is, they wish to calculate the waves (or potentials) observed in a known con�guration

of materials. In geophysics, we are interested in both forward problems and in inverse

problems where we observe waves on the surface of the earth and we wish to deduce

material con�gurations inside the earth. A later chapter contains a description of

how Toeplitz matrices play a central role in such inverse problems.

We start with a time function x

t

which may or may not be minimum phase.

Its spectrum is computed by R(Z) =

�

X(1=Z)X(Z). As we saw in the preceding

sections, given R(Z) alone there is no way of knowing whether it was computed

from a minimum-phase function or a nonminimum-phase function. We may suppose

that there exists a minimum phase B(Z) of the given spectrum, that is, R(Z) =

�

B(1=Z)B(Z). Since B(Z) is by hypothesis minimum phase, it has an inverse A(Z) =

1=B(Z). We can solve for the inverse A(Z) in the following way:

R(Z) =

�

B

�

1

Z

�

B(Z) =

�

B(1=Z)

A(Z)

(3.7)

R(Z)A(Z) =

�

B

�

1

Z

�

=

�

b

0

+

�

b

1

Z

+ � � � (3.8)

To solve for A(Z), we identify coe�cients of powers of Z. For the case where, for

example, A(Z) is the quadratic a

0

+ a

1

Z + a

2

Z

2

, the coe�cient of Z

0

in (3.8) is

r

0

a

0

+ r

�1

a

1

+ r

�2

a

2

=

�

b

0

(3:9)

The coe�cient of Z

1

is

r

1

a

0

+ r

0

a

1

+ r

�1

a

2

= 0 (3:10)

and the coe�cient of Z

2

is

r

2

a

0

+ r

1

a

1

+ r

0

a

2

= 0 (3:11)

Bring these together we have the simultaneous equations

2

6

4

r

0

r

�1

r

�2

r

1

r

0

r

�1

r

2

r

1

r

0

3

7

5

2

6

4

a

0

a

1

a

2

3

7

5

=

2

6

4

�

b

0

0

0

3

7

5

(3:12)
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It should be clear how to generalize this to a set of simultaneous equations of arbitrary

size. The main diagonal of the matrix contains r

0

in every position. The diagonal

just below the main one contains r

1

everywhere. Likewise, the whole matrix is �lled.

Such a matrix is called a Toeplitz matrix. Let us de�ne a

0

k

= a

k

=a

0

. Recall by the

polynomial division algorithm that

�

b

0

= 1=�a

0

. De�ne a positive number v = 1=a

0

�a

0

.

Now, dividing the vector on each side of (3.12) by a

0

, we get the most popular form

of the equations

2
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r
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r
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r
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r

1

r
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r
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r
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=
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0
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3

7

5

(3:13)

This gives three equations for the three unknowns a

0

1

, a

0

2

, and v. To put (3.13) in a

form where standard simultaneous equations programs could be used one would divide

the vectors on both sides by v. After solving the equations, we get a

0

by noting that

it has magnitude 1=

p

v and its phase is arbitrary, as with the root method of spectral

factorization.

At this point, a pessimist might interject that the polynomial A(Z) = a

0

+ a

1

Z+

a

2

Z

2

determined from solving the set of simultaneous equations might not turn out

to be minimum phase, so that we could not necessarily compute B(Z) by B(Z) =

1=A(Z). The pessimist might argue that the di�culty would be especially likely

to occur if the size of the set (3.13) was not taken to be large enough. Actually

experimentalists have known for a long time that the pessimists were wrong. A proof

can now be performed rather easily, along with a description of a computer algorithm

which may be used to solve (3.13).

The standard computer algorithms for solving simultaneous equations require time

proportional to n

3

and computer memory proportional to n

2

. The Levinson computer

algorithm for Toeplitz matrices requires time proportional to n

2

and memory propor-

tional to n. First notice that the Toeplitz matrix contains many identical elements.

Levinson utilized this special Toeplitz symmetry to develop his fast method.

The method proceeds by the approach called recursion. That is, given the solution

to the k�k set of equations, we show how to calculate the solution to the (k+1)�(k+1)

set. One must �rst get the solution for k = 1; then one repeatedly (recursively) applies

a set of formulas increasing k by one at each stage. We will show how the recursion

works for real-time functions (r

k

= r

�k

) going from the 3� 3 set of equations to the

4� 4 set, and leave it to the reader to work out the general case.

Given the 3� 3 simultaneous equations and their solution a
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r
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r
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=

2

6

4

v

0

0

3

7

5

(3:14)
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then the following construction de�nes a quantity e given r

3

(or r

3

given e)
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r
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r
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r
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The �rst three rows in (3.15) are the same as (3.14); the last row is the new de�nition

of e. The Levinson recursion shows how to calculate the solution a

0

to th 4 � 4

simultaneous equations which is like (3.14) but larger in size.
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The important trick is that from (3.15) one can write a \reversed" system of

equations. (If you have trouble with the matrix manipulation, merely write out

(3.16) as simultaneous equations, then reverse the order of the unknowns, and then

reverse the order of the equations.)
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The Levinson recursion consists of subtracting a yet unknown portion c

3

of (3.17)

from (3.15) so as to get the result (3.16). That is
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(3:18)

To make the right-hand side of (3.18) look like the right-hand side of (3-3-8), we have

to get the bottom element to vanish, so we must choose c

3

= e=v. This implies that

v

0

= v � c

3

e = v � e

2

=v = v[1 � (e=v)

2

]. Thus, the solution to the 4 � 4 system is

derived from the 3� 3 by

e  

2

X

i=0

a

i

r

3�i

(3.19)
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v

0

 v [1� (e=v)

2

] (3.21)
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We have shown how to calculate the solution of the 4� 4 Toeplitz equations from

the solution of the 3� 3 Toeplitz equations. The Levinson recursion consists of doing

this type of step, starting from 1� 1 and working up to n� n.

COMPLEX R,A,C,E,BOT,CONJG

C(1)=-1.; R(1)=1.; A(1)=1.; V(1)=1.

200 DO 220 J=2,N

A(J)=0.

E=0.

DO 210 I=2,J

210 E=E+R(I)*A(J-I+1)

C(J)=E/V(J-1)

V(J)=V(J-1)-E*CONJG(C(J))

JH=(J+1)/2

DO 220 I=1,JH

BOT=A(J-I+1)-C(J)*CONJG(A(I))

A(I)=A(I)-C(J)*CONJG(A(J-I+1))

220 A(J-I+1)=BOT

Figure 3.3: A computer program to do the Levinson recursion. It is assumed that the

input r

k

have been normalized by division by r

0

. The complex arithmetic is optional.

c3-3-3 [NR]

Let us reexamine the calculation to see why A(Z) turns out to be minimum phase.

First, we notice that v = 1=�a

0

a

0

and v

0

= 1=(�a

0

0

a

0

0

) are always positive. Then from

(3.21) we see that �1 < e=v < +1. (The fact that c = e=v is bounded by unity will

later be shown to correspond to the fact that re
ection coe�cients for waves are so

bounded.) Next, (3.20) may be written in polynomial form as

A

0

(Z) = A(Z)� (e=v)Z

3

A(1=Z) (3:22)

We know that Z

3

has unit magnitude on the unit circle. Likewise (for real time

series), the spectrum of A(Z) equals that of A(1=Z). Thus (by the theorem of adding

garbage to a minimum-phase wavelet) if A(Z) is minimum phase, the A

0

(Z) will also

be minimum phase. In summary, the following three statements are equivalent:

1. R(Z) is of the form

�

X(

1

Z

)X(Z).

2. jc

k

j < 1.

3. A(Z) is minimum phase.

If any one of the above three is false, then they are all false. A program for the

calculation of a

k

and c

k

from r

k

is given in Figure 3.3. In Chapter 8, on wave

propagation in layers, programs are given to compute r

k

from a

k

or c

k

.

EXERCISES:

1 The top row of a 4 � 4 Toeplitz set of simultaneous equations like (3.16) is

(1;

1

4

;

1

16

;

1

4

). What is the solution a

k

?
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2 How must the Levinson recursion be altered if time functions are complex? Specif-

ically, where do complex conjugates occur in (3.19), (3.8), and (3.21)?

3 Let A

m

(Z) denote a polynomial whose coe�cients are the solution to an m�m

set of Toeplitz equations. Show that if B

k

(Z) = Z

k

A

k

(Z

�1

) then

v

n

�

nm

=

1

2�

Z

2�

0

R(Z)B

m

(Z)Z

�n

d! n � m

which means that the polynomial B

m

(Z) is orthogonal to polynomial Z

n

over the

unit circle under the positive weighting function R. Utilizing this result, state

why B

m

is orthogonal to B

n

, that is

v

n

�

nm

=

1

2�

Z

2�

0

R(Z)B

m

(Z)

�

B

n

�

1

Z

�

d!

(HINT: First consider n � m, then all n.)

Toeplitz matrices are found in the mathematical literature under the topic of poly-

nomials orthogonal on the unit circle. The author especially recommends Atkinson's

book.

3.4 WHITTLE'S EXP-LOG METHOD

In this method of spectral factorization we substitute power series into other power

series. Thus, like the root method, it is good for learning but not good for computing.

We start with some given autocorrelation r

t

where

R(Z) = � � � + r

�1

Z

�1

+ r

0

+ r

1

Z + r

2

Z

2

� � �

If jRj > 2 on the unit circle then a scale factor should be divided out. Insert this

power series into the power series for logarithms.

U(Z) = ln R(Z)

= (R � 1)�

(R� 1)

2

2

+

(R� 1)

3

3

� � � � 0 < R � 2

= � � � + u

�1

Z

�1

+ u

0

+ u

1

Z + u

2

Z

2

+ � � �

Of course, in practice this would be a lot of e�ort, but it could be done in a systematic

fashion with a computer program. Now de�ne U

+

t

by dropping negative powers of Z

from U(Z)

U

+

(Z) =

u

0

2

+ u

1

Z + u

2

Z

2

+ � � �

Insert this into the power series for the exponential

B(Z) = e

U

+

(Z)

= 1 + U

+

+

(U

+

)

2

2!

+

(U

+

)

3

3!

+ � � �


